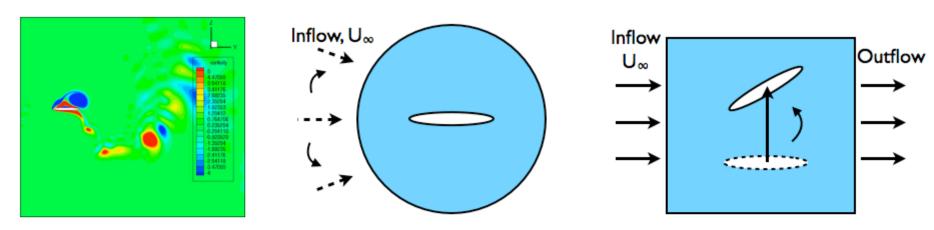
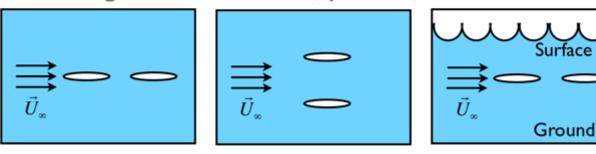


A Moving Mesh Approach for Flow Simulations of an Oscillating Hydrofoil

Ka Ling Wu '14
Brown Univesity '14
ScB, Civil Engineering

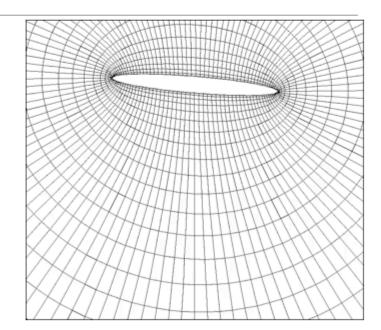
Advisor: Dr. Jennifer Franck


Second Reader: Dr. Shreyas Mandre



Motivations

- Potential rich energy source from bodies of water
- A robust infrastructure to study hydrofoil energy extraction
- Limitations of current non-inertial reference frame method


More complex configurations: tendem, parallel, free surface etc.

Objectives

- Dynamic mesh deformation method
- Simulate hydrofoil oscillating motion
- Validate the dynamic mesh method:
 - · Pressure and velocity field, vortex shedding

- Drag and lift forces
- Simulation oscillating hydrofoil with the following parameters:

$$h_{\text{max}} = 0.5c$$
 $\alpha_{\text{max}} = 75^{\circ}$ $\phi = 90^{\circ}$ $f = 0.15$

Computational Method

Continuity Equation:

$$\frac{d}{dt} \int_{V} dV - \int_{S} \mathbf{v}_{b} \cdot dS = 0$$

Navier-Stokes Equation:

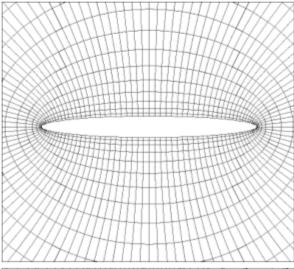
$$\frac{d}{dt} \int_{V} \rho \mathbf{v} \, dV + \int_{S} [\rho(\mathbf{v} - \mathbf{v}_{b})\mathbf{v} - \mathbf{T}] \cdot dS = 0$$

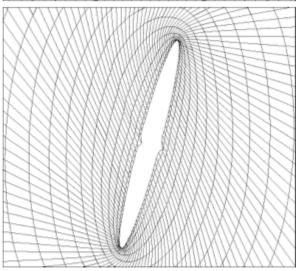
Space Conservation Law:

$$\frac{d}{dt} \int_{V} dV - \int_{S} \mathbf{v}_{b} \cdot dS = 0$$

Direct numerial simulation
 OpenFOAM CFD software

Mesh Cell Motion Approximation


Laplace Equation of Mesh Cell Velocity:


$$\frac{d}{dt}\nabla \cdot (k\nabla \mathbf{v}_b) = 0$$

Diffusivity Term:

$$k(d) = \frac{1}{d^2}$$

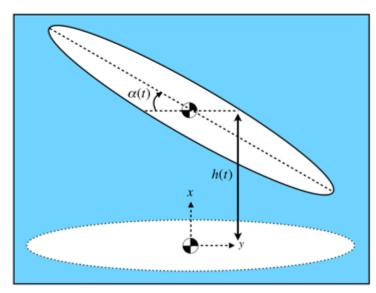
Quadratic inverse distance based diffusivity

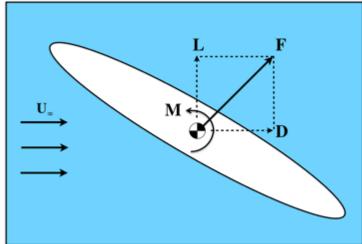
Oscillating Kinematics

Heaving Motion:

$$\frac{h(t)}{c} = h_{\text{max}} \cos(2\pi f t)$$

Pitching Motion:


$$\alpha(t) = \alpha_{\text{max}} \cos(2\pi f t + \phi)$$


Non-dimensionalized Frequency:

$$f = \frac{f^*c}{U_{\infty}}$$

Instantaneous Power

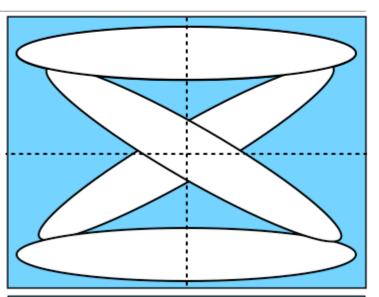
$$P(t) = L(t)\frac{dh(t)}{dt} + M(t)\frac{d\alpha(t)}{dt}$$

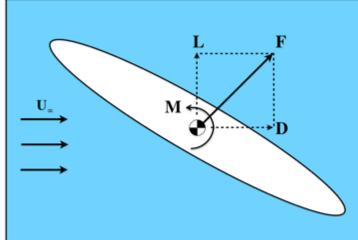
Oscillating Kinematics

Heaving Motion:

$$\frac{h(t)}{c} = h_{\text{max}} \cos(2\pi f t)$$

Pitching Motion:

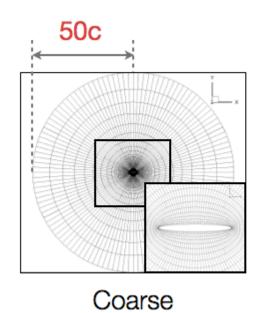

$$\alpha(t) = \alpha_{\text{max}} \cos(2\pi f t + \phi)$$

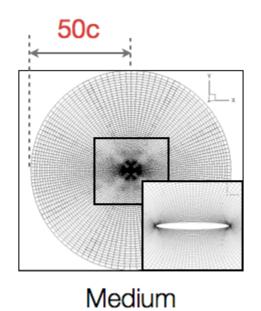

Non-dimensionalized Frequency:

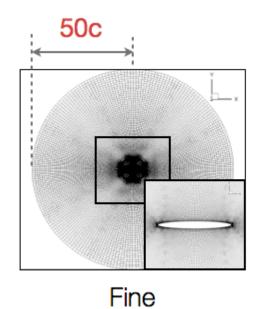
$$f = \frac{f^*c}{U_{\infty}}$$

Instantaneous Power

$$P(t) = L(t)\frac{dh(t)}{dt} + M(t)\frac{d\alpha(t)}{dt}$$






Mesh Resolution

Three Mesh Resolutions:

Mesh	Total Faces	Nodes on Body	Radial Nodes	Run Time for 1 Oscillating Cycle
Coarse	4,680	120	40	300s
Medium	14,280	120	120	5,000s
Fine	53,760	240	225	30,000s

Static Simulation Validation

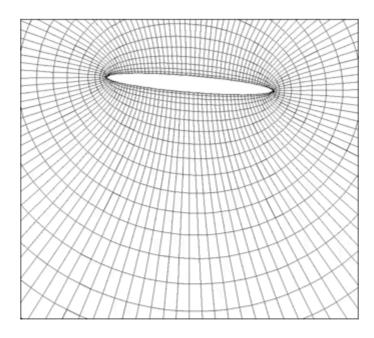
At 0° Angle of Attack

Parameter	Dynamic	Static Mesh	Percentage
	Mesh	Method	Difference
Drag	0.4080	0.4066	0.34%

At 45° Angle of Attack

Parameter	Dynamic Mesh	Static Mesh Method	Percentage Difference
Drag	0.1942	0.1946	-0.2%
Lift	1.5492	1.5512	-0.13%
Moment	-0.0190	-0.0191	0.52%

Dynamic Simulation Validation

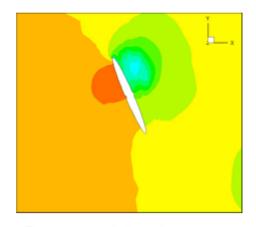

Optimal Case Kinematics Parameters:

$$h_{\text{max}} = 0.5c$$
 $\alpha_{\text{max}} = 75^{\circ}$ $\phi = 90^{\circ}$ $f = 0.15$

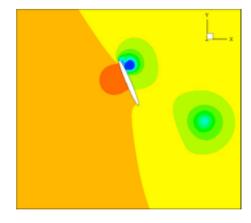
$$\alpha_{\rm max} = 75^{\circ}$$

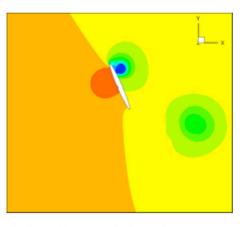
$$\phi = 90^{\circ}$$

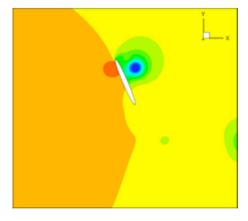
$$f = 0.15$$


Dynamic Simulation Validation

Velocity and pressure field using fine mesh

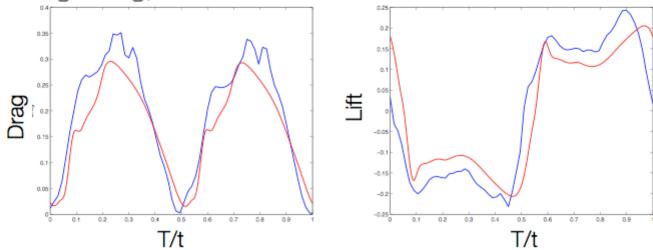

	Dynamic Mesh Method	Reference Frame Method
Velocity Field		
Pressure Field		


Vortex Shedding


Coarse Mesh

Fine Mesh

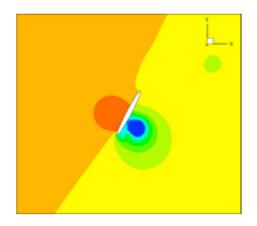
Medium Mesh

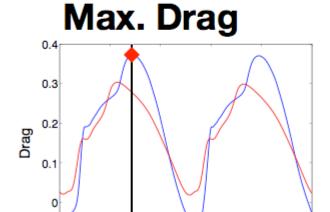


Reference Frame Method

Results

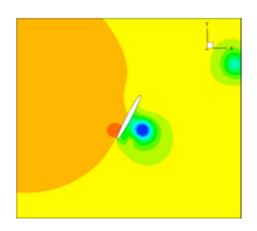
• Table for average drag, RMS lift

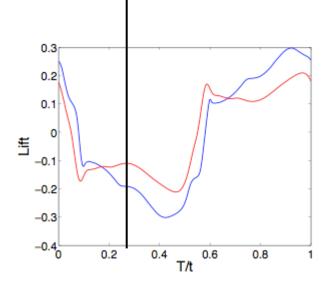

	Average Drag	RMS of Lift
Reference Frame Method	0.1603	0.1419


Mesh	Average Drag	% Difference	RMS of Lift	% Difference
Coarse	0.1929	13.91%	0.1628	14.72%
Medium	0.1876	10.81%	0.2044	44.01%
Fine	0.1856	9.63%	0.2050	44.47%

T/t = 0.34

Dynamic
Mesh Method

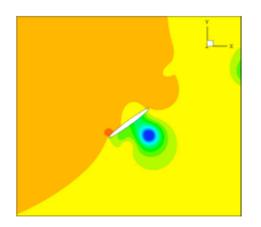


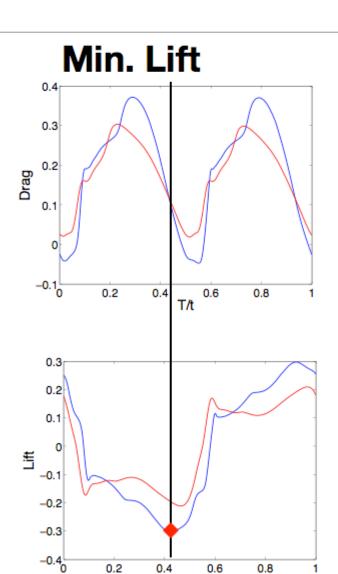

0.8

-0.1

0.2

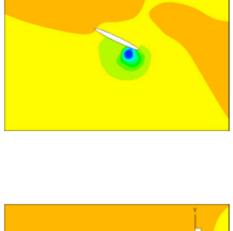
Reference Frame Method

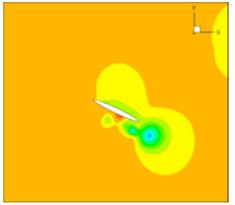



Mesh Method

T/t = 0.42

Reference **Frame Method**


Dynamic




Dynamic Mesh Method

T/t = 0.55

Reference Frame Method

Dynamic Mesh Method

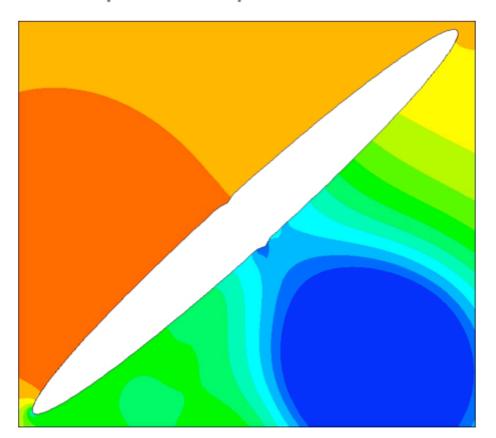
Y_x

T/t = 0.92

Max. Lift 0.3 0.2 Drag 0.1 0.2 0.4 0.8 0.3 0.2 0.1 ۳ -0.2

-0.3

0.2


Reference Frame Method

0.8

Spur Formation

- Vortices interact with the spur
- · Problems with the interpolation of points and faces

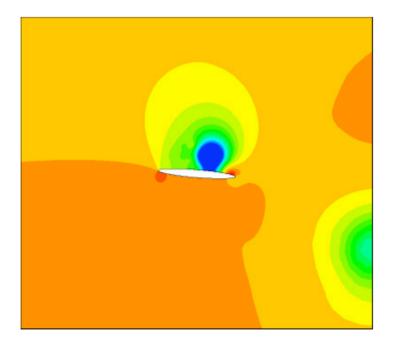
Conclusion

- Higher mesh resolution improves vortex formation & drag force
- Vortices fail to leave surface due to the formation of spur
- Model validated
 - Static simulation, oscillating kinematics, dynamic simulation

Future Work

- Solve the interpolation problem of the spur
- Investigate different laplace solver
 - E.g. Laplace solver of mesh nodes displacement
- Explore the function of diffusivity term and the effect of its exponential power
- Try different type of structured and unstructured mesh

References


- Q. Xiao, W. Liao, S. Yang, and Y. Peng, "How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil?," Renewable Energy, vol. 37, no. 1, pp. 61 – 75, 2012.
- 2. S. Frank, "Optimal Hydrofoil Kinematics for Tidal Energy Extraction," Master's thesis, Brown University, 2014.
- Q. Zhu, "Optimal Frequency for Flow Energy Harvesting of a Flapping Foil," Journal of Fluid Mechanics, vol. 675, pp. 495–517, 2011.
- M. A. Ashraf, J. C. S. Lai, J Young and M. F. Platzer., "Numerical Analysis of an Oscillating Wing Wind and Hydropower Generator," AIAA Journal, vol. 49, no. 7, pp. 1374 1386, 2011.
- T. Kinsey and G. Dumas, "Parametric Study of an Oscillating Airfoil in a Power Extraction Regime," AIAA Journal, vol. 46, no. 6, pp. 1318–1330, 2008.
- OpenFOAM Foundation, "OpenFOAM The Open Source CFD Toolbox." http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf. [Online; accessed 06 November 2014]. 27
- I. Demirdzic and M. Peric, "Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries," International Journal for Numerical Methods in Fluids, vol. 10, pp. 771–790, 1990.
- I Demirdzic and M Peric, "Space conservation law in finite volume calculations of fluid flow," International Journal for Numerical Methods in Fluids, vol. 8, pp. 1037

 1050, 1988.
- H. Jasak and Z. Tukovic, "Automatic Mesh Motion for the Unstructured Finite Volume Method." http://powerlab.fsb.hr/ped/kturbo/openfoam/docs/meshmotionjcp.pdf.
 [On- line; accessed 01 March 2014].
- 10. R. Lohner and C. Yang, "Improved ALE Mesh Velocities for Moving Bodies," Communications in Numerical Methods in Engineering, vol. 12, pp. 599-608, 1996.
- 11. H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. PhD thesis, University of London, 1996.
- 12. H. Jasak, "Dynamic Mesh Handling in OpenFOAM," 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 1996.
- F.M. Bos, Numerical simulations of flapping foil and wing aerodynamics: Mesh deformation using radial basis functions. PhD thesis, Delft University of Technology, 2010.

A Moving Mesh Approach for Flow Simulations of an Oscillating Hydrofoil

Questions?

